
Symbolic Regression for Interpretable Reinforcement Learning

Abstract—While recent years have been company to much
progress in the reinforcement learning community, many tasks
in use today still rely on carefully designed reward functions,
many of which are products of constant tweaking and tuning
by engineers and scientists. These reward functions, often
dense, symbolic functions of state, don’t exist in real world
datasets, many of which are labeled by human experimenters
— each with their own biases about desired behavior. In this
work, we describe a new paradigm of extracting symbolic
reward functions from noisy data called Interpretable Symbolic
Reinforcement Learning (ISRL). ISRL allows for human ex-
perimenters to extract interpretable reward functions solely
from data via symbolic regression. Our methods are able to
find many reward functions commonly used in reinforcement
learning benchmarks, using only tabular state-reward pairs
as input. When ISRL finds alternative functions, we find
that (a) the new reward functions generate better performing
policies or (b) uncover a bias from human labelers — both
of which may be crucial for the future of reward and task
design. Our code and data labelling infrastructure is completely
open-sourced for further development, along with an extensive
“reward dataset” of hand-labeled trajectories.

I. INTRODUCTION

Reinforcement learning, especially robotic reinforcement
learning, currently stands at an crossroads. Many of today’s
reinforcement learning algorithms are powerful, competent,
and can solve many of the tasks in popular benchmarks. The
onus of reinforcement learning progress now rests on the
design of these tasks.

What makes task design - more specifically, reward
function design - difficult? It turns out that many tasks
of interest have easy-to-classify end states (as achieved or
incomplete, as good or bad solutions, etc.), but ambiguous
intermediate states. While we can discern whether a robot
has correctly shelved a book, it becomes harder to define a
reward for such an agent within the middle of its trajectory
to that state. This notion of a dense reward is an assumption
on which many of today’s reinforcement learning algorithms
rely, and stands in the way of wide adoption of robotic
reinforcement learning.

Imitation learning assumes that agents are given expert
demonstrations of a task and attempts to minimize diver-
gences between the state-action visitation distributions of
the agent and the expert. The expert’s distribution needs
to be inferred, and becomes a formidable problem when
dealing with high-dimensional state and action distributions.
Imitation learning also suffers from effective generalization
due to overfitting and the finite-data assumption (i.e only
a limited number of trajectories are given, and thereby
cannot truly represent the entire space of possibilities an
agent might encounter), but represents the most popular
approach to encode human preferences into artificial agents.

Offline reinforcement learning extends the imitation learning
paradigm to a more challenging setting, where agents must
learn purely from a dataset comprised of interactions from
the environment and an offline policy.

Recent work (1) has shown that with the right interface,
humans can quickly label approximate dense rewards for
robotic agents. Large datasets now exist for this purpose,
often developed for the field of batch (offline) reinforcement
learning. As reward functions in reinforcement learning are
often simple symbolic functions of state and action, we
propose using human reward sketches to symbolically regress
reward functions. Current work fits (and predicts) these
reward networks with large MLPs, leading to black-box
predictions of reward and a lack of intepretability.

This paper introduces the extraction of explicit reward
functions using recent advances in symbolic regression
(2). Our regressed reward functions generate interpretable,
analytic reward functions which can be edited by human
experimenters before use. In addition, we find that our
recovered functions are less likely to overfit to the collected
data, especially when using small amounts of transitions.
Our proposed approach, titled Interpretable Symbolic Rein-
forcement Learning and illustrated in Figure 1, introduces a
new paradigm to automatically generate interpretable reward
functions. We test the efficacy of Interpretable Symbolic
Reinforcement Learning (ISRL) and is tested on a variety of
simulated batch Reinforcement Learning (RL) and traditional
reinforcement learning settings. We also release a dataset
of over two million hand-labelled reward sketches for a
variety of robotic tasks, alongside the core Python interface
to expand the data collection process.

II. PRELIMINARIES

A. Reinforcement Learning

We consider a RL framework (3) where some task T is
defined by a Markov Decision Process (MDP) consisting
of a state space S, action space A, state transition function
P : S × A 7→ S, reward function R : S × A 7→ R, and
discount factor γ ∈ (0, 1). The goal for an agent trying
to solve T is to learn a policy π with parameters θ that
maximizes the expected total discounted reward. We define
a rollout τ = (s0, a0..., sT , aT) to be the sequence of states
st and actions at ∼ π(at|st) executed by a policy π in the
environment.

B. Offline Reinforcement Learning

In standard RL, policies are constantly allowed to interact
with the environment during policy improvement. This allows
for exploratory behavior, especially in early stages of learning,
which can often be crucial to an agent’s success. In offline

Fig. 1: Symbolic regression of rewards can provide human exper-
imenters faster ways to debug imitation learning, by more easily
casting it as reinforcement learning. Our approach, Interpretable
Symbolic RL (ISRL), provides an interactive and safe way for
humans to extract reward functions from coarsely-labelled data.

RL, an agent must learn entirely from a dataset collected
offline, attempting to learn an optimal policy on some MDP
without getting to interact with the environment. In addition,
unlike imitation learning, the dataset is often not considered
to be optimal, leading to further difficulty during policy
optimization.

Offline reinforcement learning has made extensive progress
in recent years. In this paper, we abstract the policy learning
portion, focusing solely on reward function inference. For all
offline RL experiments, we use an open-source implementa-
tion of Batch-Constrained Q-Learning (BCQ) (4), which is
expanded on in detail in Appendix VI-B.

C. Symbolic Regression

Symbolic regression concerns the discovery of an ana-
lytical expression that accurately matches a given dataset.
Symbolic regression is an important tool in both engineering
and natural sciences, and allows for fast recovery of even
compositional or higher-order expressions from noisy data.
While software tools in symbolic regression are well known
(5), recent approaches have turned to the function approxi-
mation abilities of neural networks to amplify the power of
symbolic regressors. In many cases (2; 6), neural networks
are regressed to datasets before the symbolic expressions are
extracted using heuristics such as symmetry, compositionality,
and other simplifying properties.

In this work, we heavily utilize AI Feynman (2), a recent
approach for symbolic regression. AI Feynman fits neural
networks to datasets, and then uses heuristics based on input-
output pairs to reduce and combine input variables. What
remains is often a simple function of input, recovered ana-
lytically purely from tabular data. AI Feynman is expanded
on in Appendix VI-C.

D. Reward Sketching

Many tasks, especially in reinforcement learning scenarios,
have complex, engineered reward functions. While many
tasks have intuitive termination states, leading to a large
number of tasks that are defined as sparse-reward problems,
many algorithms today require the notion of a dense reward
(7). As human labelers are often used in supervised learning
settings (8), a simple way to generate dense reward datasets
is to label trajectories approximately using web interfaces
(1). Given the context of a whole trajectory, humans can
quickly sketch reward accumulation for agents, generating
approximate yet dense rewards for even complex problems.

III. METHOD

In this section, we introduce an approach to symbolically
regress reward functions from data. Recovering analytic
reward functions is crucial for interpretable reinforcement
learning agents, especially as the research community moves
towards batch and offline reinforcement learning settings.
As described in Algorithm 1, we introduce Interpretable
Symbolic RL, a new paradigm for extracting symbolic
rewards from arbitrary datasets.

Algorithm 1: Interpretable Symbolic RL
Returns: A symbolic reward expression.
Input: Dataset X , consisting of (s, a, r) pairs, N
transitions to use.
X ′ ∼ random.sample(X, N)
Pareto Frontier of freward = AIFeynman(X ′)
Human Experimenter: Choose, edit final freward

if offline then
for transition in X do

s, a = transition[’s’],
transition[’a’]
transition[’r’] = freward(s, a)

end
else

environment.reward = freward

end

A. Batch RL

To test AI Feynman’s ability to regress reward functions
from datasets, we begin in the batch RL setting, where
datasets are collected and stored offline. We take a random-
ized subset of the dataset, and then tabularize the observation
and action and generate a dataset of (x, y) regression pairs,
where x is the concatenated observation and action and y
is the reward1. We then run the AI Feynman subroutine, as
described in Section II-C, which returns a Pareto frontier of
reward functions. As the Pareto frontier is a two-dimensional
“ranking” based on accuracy and complexity, we return the
top-three choices (by accuracy) to a human experimenter,
who then picks the reward function an agent is to use.

1The size of the dataset is ablated on in Section IV-E1.

In the batch RL setting, we then relabel the entirety of
the dataset using the regressed reward function, and run the
batch RL algorithm on the annotated dataset.

B. Human-Annotated RL
Human-annotated rewards are, by nature, noisy functions of

state and goal. To generate a dataset, we run a reinforcement
learning algorithm (here, we use Deep Deterministic Policy
Gradient (DDPG) and Hindsight Experience Replay (9; 10),
which are described in detail in Appendix VI-A) and learn
a particular task. We store every transition executed by the
training policy, and use a designed web interface to play
back each transition to be labelled by a human experimenter,
as visualized in Figure 1. In this context, label refers to an
approximate reward a human user attributes to a particular
state. As human annotations are time-intensive, we linearly-
interpolate between labelled points. In our experiments,
human users, on average, labelled < 10% of states in a
particular trajectory, trading off efficiency for quality of
labelling. However, as we shall see in the following section,
our approach is able to use even these noisy annotations
to recover interesting reward functions. More interestingly,
the reward functions often highlight hidden biases that
human labelers seem to have about task performance in
reinforcement learning, leading to insights regarding how
reward functions might be designed in future benchmarks.

The dataset released with this paper includes two million
unique transitions labelled by four human experimenters
across three different robotic tasks. For all human-annotation
experiments, we use this dataset, ablating mainly on the size
of the data subset that AI Feynman uses to regress a reward
function.

IV. EXPERIMENTAL SETUP

A. Baselines
The main comparisons we use against our approach are

against the method described in (1) as well as against an
oracle, ground-truth reward2. (1) fits a neural network to
a batch of human-annotated data, continuously refreshing
it as the agent collects more experience. In this work, we
implement their approach by fitting a neural network to the
subset of data our method would see, and use train it with
cross-validated hyperparameters described in Appendix VI-D;
in the offline setting, we fit the network to the static dataset
(with ground-truth rewards), and in the annotation setting,
we fit the network to the human annotations our approach
sees. Most importantly, we use the same hyperparameters
for the neural network training in both our approach and
the neural network baseline from (1). All experiments are
mean-averaged over five seeds.

B. Environments
We test our approach on a variety of goal-directed

environments, described below and in Tables I-II.
2The ground-truth reward function is the one that “ships” with the

environment, often implemented inside of a programming language using
state information.

Fig. 2: A simple agent - a point mass - travels in two dimensions
to the goal. The simpler task rewards the agent with the standard
Euclidean distance between itself (green circle) and the goal (red
circle). The more difficult environment rewards the agent with the
exponential of the negative Euclidean distance to the goal.

1) Batch RL: In the batch setting, we test our approach
on 2D-Pointmass and AntNavigation, both from (11). The
point mass simply moves in the xy plane, but the Ant requires
an agent to control the eight joints to propel itself forward
(Figure 3). Both environments require navigation of agent to
randomly selected goals in a maze; the environment variations
increase the size (and thereby the difficulty) of these mazes
(Figure 2). Lastly, the ground truth reward functions used
in each environment are either the negative of the euclidean
distance between the agent and goal (Simple variants) or
the exponential of that same quantity (Exponential variants).
During evaluations, we report either the accumulated (ground-
truth) reward over a trajectory (in 2D-Pointmass) or number
of successful navigations (in AntNavigation), where higher
values are better.

2) Human Annotations: When testing our approach on
human annotations, we test using the Fetch Robotics environ-
ments from (12). We test, in order of difficulty, FetchReach
(move end effector to goal location), FetchPush (move
block to goal location), and FetchSlide (knock puck on
slippery surface to goal location), as seen in Figure 4. During
evaluations, we report final distance of the end effector
(Reach) or object (Push, Slide) to the goal, where smaller
values are better.

C. Batch RL Results

We start by verifying that AI-Feynman can learn and
recover symbolic reward functions from simple navigation
tasks, illustrated in Figure 2 and listed in Table I. In the
SimpleNavigation tasks, we train a pointmass agent to move
itself in two-dimensions towards a randomly selected goal in
the maze. The reward has two variants — standard (negative)
Euclidean distance and the exponential of the same value
— which we denote as two different environments Simple-*
and Exponential-* respectively.

With the results in Table I, we see that for the simpler
variants of the task, the reward recovery system has no
issue, whereas the true reward for the exponential variants
is unable to be recovered. However, as we see in Figure
5 (which plots the error distribution between the recovered
and ground truth on 1M randomly sampled vectors), the
recovered function shows remarkable similarity to the true
function. While seeming a failure for ISRL, when relabelling

Fig. 3: A more complex agent - the Ant - is a high-dimensional
locomoter which navigates to the goal by controlling its eight joints.
The simpler task rewards the agent with the standard Euclidean
distance between itself (green circle) and the goal (red circle). The
more difficult environment rewards the agent with the exponential
of the negative Euclidean distance to the goal.

the dataset with the recovered reward function, we see (Figure
9) that these recovered functions actually are more efficient in
learning agent navigation policies than the original negative
exponential of Euclidean distance between goal and agent.

AI Feynman, comparing Figures 6 and 7, is able to find
a reward that generates a natural curriculum (13) for the
agent; the standard exponential of Euclidean distance drops
off quite sharply, making it hard to pick up reward signals far
away from the goal (where an agent mind find itself often in
early stages of training). ISRL’s recovered reward function
is smoother towards the optima reached at the goal, likely
allowing for an agent to have a smoother policy optimization
process. The recovered function is reminiscient of reward
shaping literature, where reward functions components are
designed by a human experimenter to progressively nudge
the agent towards the desired behavior. We see in Figure 8
that the neural network completely fails to capture the true
reward function, despite fitting the given data subset well.

Fig. 4: The robotics tasks we focus on, FetchReach, FetchPush,
FetchSlide, all require an agent to accomplish a randomized goal
in the environment. The reward functions here are learned from
human annotations, making the task completely subjective on the
quality of the labeling.

D. Human Annotation Results

In this section, we use a subset of data labelled as Expert
data, which includes only the final 10% of transitions from
the training policy. These transitions are gathered toward the
end of learning, where task completion rates are generally
higher. We ablate on the effects size and quality of dataset
in Section IV-E1 and Section IV-E2 respectively.

Using the Expert subset from the human-annotated dataset
described in Section III-B, we report our results in Table II
and Figures 12-17. On the FetchReach task, our approach
is unable to find the true reward, leading to a drop in
performance as compared to the ground-truth baseline.

Fig. 5: Despite recovering a “different” reward function, the error
distribution between the two functions on randomly sampled inputs
is skewed heavily towards zero.

Fig. 6: 0.2ecos (x−y), plotted. AI Feynman is able to find a naturally
smooth reward function that fits the data, likely leading to a natural
curriculum to help the locomoter slowly learn to reach the goal.

However, in both FetchPush and FetchSlide, AI Feynman
we see performance that matches the ground-truth baseline.
Most important is when compared to the pure neural network
approach from (1), we see that the symbolic regression
step generates sizeable improvements in task performance,
especially in these low data regimes.

E. Ablation Studies

1) Dataset Sizes Affects Reward Inference: In this section,
we increase the size of the dataset (labelled as Medium)
to show each method the final 25% of transitions from
the training policy to do reward inference. While still
generally high-quality transitions, this dataset includes much
noisier data. From our experiments, we found that human
experimenters had trouble labelling extremely bad policies
(i.e policy does not move the agent for the entirety of the

Environment Name Description True Reward Function Recovered? Recovered Function
SimpleSmall 2D Navigation with Pointmass −||xagent − xgoal||2 Yes
SimpleLarge 2D Navigation with Pointmass −||xagent − xgoal||2 Yes

ExponentialLarge 2D Navigation with Pointmass, Large Maze e−||xagent−xgoal||2 No 0.1ecos(x0−x2)+cos(x1−x3)

AntUMaze High dimensional locomoter e−||xagent−xgoal||2 No
√

0.217e(cos(x1−x3)−(x0−x2)2)

TABLE I: The environments and their respective AI Feynman-recovered reward functions. We see that the standard Euclidean distance
rewards are recovered easily, whereas the exponential reward function has difficulty being recovered. The agent’s state — xagent — consists
of [x0, x1] whereas the goal state — xgoal — consists of [x2, x3].

Environment Name Description Number of transitions Recovered? Recovered Function
FetchReach Robot reaching fictional goal 2500 No arccos(0.5 + c(x0

x2−x5+x3
+ x1− x4))

FetchPush Robot pushing block to goal 1000 No −|x1 − x4|+ sin(1/ cos(x0 + x2 − x3 + x5))
FetchSlide Pushing slippery block to goal 1000 Yes Euclidean distance b.w object and goal

TABLE II: On a small dataset (i.e. 3000 transitions or less) of human-labelled rewards, AI Feynman is able to recover functions that are
remarkably close to the original. All environments use the negative Euclidean distance between the object and goal (or, Cartesian coordinates
of robot hand and goal) as the reward for the agent.

Fig. 7: e−||x−y||2 , plotted. Unlike the function found by AI
Feynman, the exponentiated euclidean distance, traditionally used
to train navigation and locomotion, provides a sharp increase in
value. At distances further from the goal (where an agent may
normally find itself early during training), such a sharp dropoff
may introduce difficulties into the policy optimization process. We
especially highlight the difference in y-axis between this function
and the function found in Figure 6.

episode), leading to constant labelled rewards. We see, in
almost all environments, that the policies trained with our
approach do worse here than with the Expert counterparts,
despite still maintaining better performance than the neural
network approach from (1).

With this larger dataset, we find interesting cases when
our approach is unable to recover the true reward from
human annotations; for example, in Table III, we can see
that the FetchSlide experiment has a multiplicative term for
the difference between x1 and x4, which is the y-coordinate
of the object and goal location respectively. Due to the design
of the environment and physics engine, the y-coordinate is
the more “important” coordinate, as the goal is often located
at a large distance (with respect to y) from the start, while
the x-coordinate varies much less heavily. We can infer the

Fig. 8: Fitted neural network function, plotted. Despite fitting the
small dataset well, we see that the neural network fails to learn the
true reward function.

the human annotators “valued” the closeness with respect to
y more than the other two coordinates, which emerges as
the multiplicative constant seen in the symbolic equation.

2) Dataset Quality Affects Reward Inference: While we
do not include plots, we find that when we show our
approach and the neural network approach the entirety of the
annotated datasets, neither approach is able to learn any useful
information. We hypothesize that this is an exacerbation
of the issue described in the previous section: when the
policy performs incredibly poorly (i.e when the policy moves
randomly, or does not move at all), human labelers have no
information on how to label such episodes. We found that
over 20% of transitions in the first quarter of training epochs
were labelled as constant. When replaying those episodes,
we see that the policy is often in one of these two failure
states. We acknowledge our method’s need for high quality
transition data, and aim to improve on this issue in future
work.

Environment Name Description Number of transitions Recovered? Recovered Function
FetchReach Robot reaching fictional goal 10000 Yes Euclidean distance b.w arm and goal
FetchPush Robot pushing block to goal 5000 Yes Euclidean distance b.w object and goal
FetchSlide Pushing slippery block to goal 3000 No −23 ∗ ((x0− x5 + x2− x3) ∗ (x1− x4))2

TABLE III: On a larger dataset of human-labelled rewards, AI Feynman is able to recover functions that are remarkably close to the original.
All environments use the negative Euclidean distance between the object and goal (or, Cartesian coordinates of robot hand and goal) as the
reward for the agent.

Fig. 9: When AI Feynman is able to recover the correct reward
function, we see that performance is similar to performance when
training with the ground truth reward function. In this simpler
regression task, we see that the neural network is reasonably close to
the performance of both the ground truth baseline and our approach.
Higher is better.

Fig. 10: When using the recovered reward functions seen in Table
I, we see similar final performance but smaller spread of agents
than when using the groundtruth, “intuitive” reward. In this harder
task, we start to see the benefits of symbolic regression over the
neural network approach proposed in (1). Higher is better.

V. RELATED WORK

In this section, we place our work in the context of
other methods, centered around human-in-the-loop learning

Fig. 11: Even on the more difficult Ant variant of the navigation
task, using the recovered reward function leads to comparable
performance when comparing to the groundtruth, “intuitive” reward.
Higher is better.

Fig. 12: When using the high-quality, small annotated dataset on a
reaching task, we see comparable performance between ours and
neural network driven approaches. Lower is better.

systems. Recently, (14) proposed an evolutionary approach
to building symbolic, interpretable reward functions. The
method described requires learning of a multitude of agents
(where an agent, in a reinforcement learning setting, consists
of a (policy, reward function) pair), which is much less
computationally-efficient than the approach described in
this work. In addition, as discussed throughout the text, (1)

Fig. 13: When using the high-quality, small annotated dataset on a
pushing task, we start to see the benefits of symbolic regression.
Our regressed function, seen in Row 2 of Table II, generates better
policies than even the ground truth function, which both outperform
the neural network approach from (1). Lower is better.

Fig. 14: When using the high-quality, small annotated dataset on the
sliding task, our method vastly outperforms the black-box neural
network reward function. Lower is better.

learns a black box reward function via human annotations;
our results show that by regression of symbolic reward
functions, there are improvements in all important dimensions
of reinforcement learning agents: performance, robustness,
and interpretability.

A. Reward Inference and Learning

The field of inverse reinforcement learning — the learning
of reward functions from trajectories — is a well-known,
computationally-difficult problem in the reinforcement learn-
ing community (15). Recently, work using deep networks
has to do reward inference has proliferated the space for
the last decade (16). Most applicable to our paper is the
field of AI (Value) Alignment (17). AI alignment often uses
inverse RL approaches to help agents specify goals to human

Fig. 15: On the larger, noisier dataset, our approach degrades in
the simpler task. Lower is better.

Fig. 16: On the harder, pushing task with a noisy dataset, we find
significant improvements compared to the neural network approach,
further solidifying the hypothesis that symbolic regression improves
reward learning baselines. Lower is better.

experimenters before optimizing for them, hopefully leading
to safe behavior upon deployment (18; 19; 20; 21). Our work
also requires a human to pick the reward function from the
Pareto-frontier, enabling a safer optimization loop than black
box inference of reward functions, such as the approach
studied in (1).

B. Human-in-the-Loop Reinforcement Learning

Recently, there has been a plethora of interest in learning
reward functions from human preferences. As discussed
in Section I, humans show poor performance in defining
dense rewards to agent trajectories (even reward design is
difficult, and can lead to interesting failure cases (22)). As a
result, recent approaches have learned classification-based
rewards from human labels. In these works, classifiers are
learned from a dataset of end states; these end states are
labelled quickly by humans as good and bad, allowing the

Fig. 17: In the hardest sliding task with a noisy dataset, our method
improves upon the neural network baseline significantly, despite
not matching the oracle in this task. Our method provides greater
interpretability into biases from the human labelers, as described
in Section IV-E1. Lower is better.

agent to classify novel end states with sparse reward signals
(23). Another line of work attacks these issues by using
meta-learning approaches for fast adaptation (24), but often
requires ground-truth dense rewards during training.

REFERENCES

[1] S. Cabi, S. Gómez Colmenarejo, A. Novikov,
K. Konyushova, S. Reed, R. Jeong, K. Zolna,
Y. Aytar, D. Budden, M. Vecerik, and et al.,
“Scaling data-driven robotics with reward sketching
and batch reinforcement learning,” Robotics: Science
and Systems XVI, Jul 2020. [Online]. Available:
http://dx.doi.org/10.15607/rss.2020.xvi.076

[2] S.-M. Udrescu, A. Tan, J. Feng, O. Neto, T. Wu, and
M. Tegmark, “Ai feynman 2.0: Pareto-optimal symbolic
regression exploiting graph modularity,” 2020.

[3] R. S. Sutton and A. G. Barto, Reinforcement learning:
An introduction. MIT press, 2018.

[4] S. Fujimoto, D. Meger, and D. Precup, “Off-policy deep
reinforcement learning without exploration,” 2019.

[5] M. Schmidt and H. Lipson, “Distilling free-form natural
laws from experimental data,” science, vol. 324, no.
5923, pp. 81–85, 2009.

[6] M. Cranmer, A. Sanchez-Gonzalez, P. Battaglia, R. Xu,
K. Cranmer, D. Spergel, and S. Ho, “Discovering
symbolic models from deep learning with inductive
biases,” 2020.

[7] A. Irpan, “Reinforcement learning
doesn’t work, yet.” [Online]. Available:
https://www.alexirpan.com/2018/02/14/rl-hard.html

[8] Amazon, “Amazon mechanical turk.” [Online].
Available: https://mturk.com

[9] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez,
Y. Tassa, D. Silver, and D. Wierstra, “Continuous control
with deep reinforcement learning,” 2019.

[10] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider,
R. Fong, P. Welinder, B. McGrew, J. Tobin, P. Abbeel,
and W. Zaremba, “Hindsight experience replay,” 2018.

[11] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and
P. Abbeel, “Benchmarking deep reinforcement learning
for continuous control,” 2016.

[12] M. Plappert, M. Andrychowicz, A. Ray, B. McGrew,
B. Baker, G. Powell, J. Schneider, J. Tobin, M. Chociej,
P. Welinder et al., “Multi-goal reinforcement learning:
Challenging robotics environments and request for
research,” arXiv preprint arXiv:1802.09464, 2018.

[13] Y. Bengio, J. Louradour, R. Collobert, and J. Weston,
“Curriculum learning,” in Proceedings of the 26th annual
international conference on machine learning, 2009,
pp. 41–48.

[14] H. Sheikh, S. Khadka, S. Miret, and S. Majumdar,
“Learning intrinsic symbolic rewards in reinforcement
learning,” 2020.

[15] A. Y. Ng and S. J. Russell, “Algorithms for inverse
reinforcement learning,” in Proceedings of the Seven-
teenth International Conference on Machine Learning,
ser. ICML ’00. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2000, p. 663–670.

[16] R. Akrour, M. Schoenauer, and M. Sebag, “Preference-
based policy learning,” in Proceedings of the 2011 Euro-
pean Conference on Machine Learning and Knowledge
Discovery in Databases - Volume Part I, ser. ECML
PKDD’11. Berlin, Heidelberg: Springer-Verlag, 2011,
p. 12–27.

[17] I. Gabriel, “Artificial intelligence, values and alignment,”
ArXiv, vol. abs/2001.09768, 2020.

[18] P. Christiano, J. Leike, T. B. Brown, M. Martic, S. Legg,
and D. Amodei, “Deep reinforcement learning from
human preferences,” 2017.

[19] D. Amodei, C. Olah, J. Steinhardt, P. F. Christiano,
J. Schulman, and D. Mané, “Concrete problems in AI
safety,” CoRR, vol. abs/1606.06565, 2016. [Online].
Available: http://arxiv.org/abs/1606.06565

[20] D. Hadfield-Menell, A. D. Dragan, P. Abbeel,
and S. J. Russell, “The off-switch game,” CoRR,
vol. abs/1611.08219, 2016. [Online]. Available:
http://arxiv.org/abs/1611.08219

[21] T. Everitt, V. Krakovna, L. Orseau, M. Hutter, and
S. Legg, “Reinforcement learning with a corrupted
reward channel,” CoRR, vol. abs/1705.08417, 2017.
[Online]. Available: http://arxiv.org/abs/1705.08417

[22] OpenAI, “Faulty reward functions in the wild.”
[Online]. Available: https://openai.com/blog/faulty-
reward-functions/

[23] M. Palan, N. C. Landolfi, G. Shevchuk, and
D. Sadigh, “Learning reward functions by integrating
human demonstrations and preferences,” CoRR,
vol. abs/1906.08928, 2019. [Online]. Available:

http://arxiv.org/abs/1906.08928
[24] A. Gupta, R. Mendonca, Y. Liu, P. Abbeel,

and S. Levine, “Meta-reinforcement learning
of structured exploration strategies,” CoRR,
vol. abs/1802.07245, 2018. [Online]. Available:
http://arxiv.org/abs/1802.07245

[25] S. Fujimoto, H. van Hoof, and D. Meger, “Addressing
function approximation error in actor-critic methods,”
CoRR, vol. abs/1802.09477, 2018. [Online]. Available:
http://arxiv.org/abs/1802.09477

VI. APPENDIX: DETAILED ALGORITHM EXPLANATIONS

A. Deep Deterministic Policy Gradients

Across all experiments, all networks share the same
network architecture and hyperparameters. For each policy,
we use Deep Deterministic Policy Gradients (9), using
the OurDDPG.py implementation from the open source
repository of (25). Each actor and the critic have two hidden
layers with 400 and 300 neurons, respectively, and use ReLU
activation.

DDPG concurrently learns a Q-function and policy, using
off-policy data to learn the Q-function, and then optimizing
the policy with respect to the learned Q-function. In our
work, the policy learning is abstracted away, and DDPG
can be replaced with any on- or off-policy reinforcement
learning method (or, any other control method, such as Model
Predictive Control).

B. Batch Constrained Q-Learning

Despite success of off-policy reinforcement learning al-
gorithms such as DDPG, many algorithms only work when
the replay buffer used for Q-function updates is correlated
to the current policy. Batch Reinforcement Learning extends
the difficulty of this setting, by using data collected from an
entirely different policy, where algorithms like DDPG have
been shown to break down quickly.

Batch Constrained Q-Learning (4) claims that using
algorithms like DDPG on such buffers (i.e from policies
entirely unrelated to the current) leads to the learning of the
Q-function of a different MDP, which then generates large
extrapolation errors and poor performance. BCQ fixes these
issues by restricting the policy only to possible actions to be
in the batch. Their work introduces several other points that
are crucial for correct implementation, all of which can be
abstracted away as in this work, what matters is that ISRL
operates on the same batch of data that BCQ uses for policy
learning.

C. AI-Feynman

AI Feynman (2) is a recent advance in symbolic regression,
which aims to find symbolic expressions from data by fitting
neural networks and finding symmetries from neural network
gradients.

AI Feynman receives as input tabular, input-output re-
gression pairs, and outputs a Pareto frontier of symbolic
expressions, ordered by both complexity (in bits) and

accuracy (of fit with respect to dataset). After fitting a neural
network to the dataset, AI Feynman looks for symmetries in
gradients under translation, scaling, and other mathematical
operations; after finding such symmetries in data, it replaces
the affected input variables with another, ”meta”-variable,
builds a new dataset (i.e by replacing an expression such
as (x − y) with a new variable that represents it: z), and
continues the recursive operation. This allows AI Feynman
to reduce high dimensional datasets to compact symbolic
representations of data.

D. Regression Network Hyperparameters

For all neural networks used in regression, we train until
convergence: a < 10−5 MSE. We use a three layer MLP
with layer sizes of 128−128−128, all except the final layer
activated with tanh activations. We use the ADAM optimizer
with an initial learning rate of 0.001, and use an adaptive
learning rate schedule (dropping the learning rate by a factor
of 10 with a tolerance of 10 epochs) until convergence is
reached.

