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Abstract

We present a novel intelligent tutoring sys-
tem, which builds upon well-established hy-
potheses in educational psychology and incor-
porates them inside of a scalable software ar-
chitecture. Specifically, we build upon the
benefits of knowledge vocalization (Ausubel,
1961), parallel learning (Topping, 1996), and
immediate feedback (Samuels and Wu, 2003)
in the context of student learning. Driven by
free, online resources, our work scales easily
in terms of class size while still operating at
the granularity of individual students. Addi-
tionally, we allow teachers to retain full con-
trol of the outputs, and provide student statis-
tics to help them better steer their classroom
discussions. Our experiments show promising
results, and cement our hypothesis that the sys-
tem is flexible enough to serve a wide variety
of purposes in a classroom setting.

1 Introduction

One notable constant through the history of humanity
is education. Despite changing mediums, from paper
to pixels, the structure of education has stayed nearly
identical: sequential, isolated learning, bookended by
exams and benchmarked by grades.

In this paper, we develop a novel framework that can
replicate some factors that are conducive to learning, as
cited by educational psychologists; specifically, when
students vocalize what they have learned, get feedback
on those responses, and learn about related topics when
they struggle with the main one, knowledge retention
has been proven to increase (Topping, 1996). We ask
students to vocally answer questions created by their
teacher, who provided pertinent data sources when cre-
ating the question. We then perform semantic similar-
ity tests between a student answer and the key concepts
extracted from source data, and provide feedback to
student about their performance. When struggling, we
bring the student to other questions that will help cover
their gaps in knowledge. We stay true to the unofficial
education-technology motto of minimizing teacher in-
vestment while maximizing student impact (Norris and
Soloway), and develop a pipeline that uses machine
learning to augment the education process.

1.1 Related Work

Education technology (ET) is defined as the “’practice
of facilitating learning [by] creating, using, and manag-
ing appropriate technological processes” (Hlynka and

Jacobsen). Many ET solutions do not make good use
of either the educational infrastructure already in place,
or the expertise of teachers in the classrooms. The lead-
ing ET applications offer deployment flexibility to the
educator, constantly interact with the student, and offer
ease of setup through pre-built curricula. Yet, many of
these successful apps are still constrained by the fact
that their materials are entirely expert-curated. Our ap-
proach builds upon the principles of interaction and
feedback, but goes one step further. We offer educa-
tors a way to intelligently build curricula and provide
recommendations to struggling students by using only
a few, teacher-provided data sources.

2 Implementation
2.1 Pre-Teacher Setup

For each subject area supported by our framework,
we create a tf-idf index (Ramos, 2003) using a hand-
crafted list of seed URLs that we believe are pertinent
to the topic (i.e the subject of US History may have
Wikilinks to different eras in American History). We
use a web-spider to crawl the seed links to a config-
urable depth, and extract the text from each unique link
as a separate document. We use standard text prepro-
cessing techniques (Allahyari et al., 2017) in the cre-
ation of these indices, and mitigate the issue of do-
main transfer by maintaining multiple subject-based tf-
idf indices. In parallel, we train a standard Paragraph
Vector (Le and Mikolov, 2014) model with the Gen-
Sim Python Library (Rehiifek and Sojka, 2010) using
the cleaned data, and store only the encoder for use in
the recommendation engine described in Sec. 2.3.2.

2.2 Teacher Usage

Upon creating a class, the teacher selects a subject
area that roughly corresponds to the class being taught,
which, in the background, links a relevant tf-idf index
to the class. The teacher, now creating questions, is
asked to provide two pieces of information per ques-
tion: a Question Title (seen by the student when asked
to answer), and Data Sources. The data sources, links
or blocks of text, are assumed to be relevant to the
question and material covered in class, and are then
preprocessed using the same standard techniques as in
Sec. 2.1. Once we have cleaned text, we use a LSTM-
CRF model (Lample et al., 2016), trained on the An-
notated Groningen Meaning Base (Bos et al., 2017), to
extract named entities (NE). In parallel, we run the text
through TextRank (Mihalcea and Tarau, 2004; Barrios
et al., 2016), and retrieve a list of key concepts (KC)
from the source. We calculate the score for each word



using a weighted score of it’s tf-idf weight, and indica-
tor functions corresponding to its presence in either the
NE or KC lists.

s(w) = TF(w) + al[KC(w)] + BI[NE(w)] (1)

where TF(w) is the tf-idf score of the word, and « and
[ are empirically-set hyperparameters. If appropriate,
we combine the words into phrases using the two lists
of NEs and KCs, as well as the NLTK Multiword Ex-
pression Tokenizer (Loper and Bird, 2002), and assign
the phrase the sum of its component scores. We return
to the teacher a list of (concept, score) pairs,
who can then manually adjust any phrases and their
corresponding score values. We also embed the raw
text extracted from the question’s associated data using
the trained Paragraph Vector model described in Sec.
2.1, and store the "question embedding” in a database.

2.3 Student Usage

2.3.1 Answering

When a student enrolls in a class, he will see the ques-
tions proposed by the teacher, only with the question
title. As the teacher picked data sources presumably
related to class material, the student enables his mi-
crophone, and answers the question by speaking to
the computer using classroom or background knowl-
edge. To handle speech-to-text, we utilize Mozilla’s
open source implementation of DeepSpeech (Hannun
et al., 2014; Mozilla, 2018), and with the transcripted
text, we preprocess it with the same methods used in
Sec. 2.1. From there, we tokenize the answer, and then
score the answer by checking for token existence in the
list of phrases associated with the question. We con-
tribute the phrase’s full score even for partial hits with
student answers, and we acknowledge a more sophisti-
cated scoring scheme could be used.

2.3.2 Recommendations

Along with the score and a visual representation of
which words in his answer matched up with key con-
cepts associated with the question, we also provide
the student recommendations to other similar questions
to enable parallel learning. We use compute the co-
sine similarity between the embeddings of the current
question and all other questions created by the teacher
within the particular class, and return the questions that
are the three nearest neighbors in embedding space.

3 Results

For individual elements of the pipeline, such as the
LSTM-CREF or the Paragraph Vector networks, we use
many of the same training datasets and cross-validation
procedures as described in the original papers.

We also conducted a user study to evaluate sys-
tem performance (key concepts extracted, and rec-
ommended questions) on 10 example questions, and
judged by 24 respondents (both teachers and students).
We asked for 1-5 scale relevance ratings (5 being of

high relevance) for each of the key concepts and recom-
mended questions, and present truncated results in Ta-
ble 1. We also gauge the importance and effectiveness
of the three main embodiments of the effective learning
hypothesis within our system: (A) Knowledge Vocal-
ization, (B) Parallel Learning (via Recommendations),
and (C) Immediate and Visual feedback, and present
truncated results using a similar scale in Table 2.

Question Q1 Q7 | Q10
Avg. Relevance of KC 433 | 3.50 | 4.00
Avg. Relevance of Rec. ?s | 1.33 | 3.20 | 4.50

Table 1: Sampled relevance scores, avg’d

@A | @B | ©
Component Importance | 3.75 | 433 | 2.50
Component Effectiveness | 4.25 | 2.33 | 2.33

Table 2: Importance and Effectiveness Scores, avg’d

Our most surprising conclusions came from a pilot
program conducted in Anonymized Area Schools, af-
ter the a web-based implementation of the system had
been in use inside of 3 classrooms studying various Ad-
vanced Placement (AP) subjects. All three teachers,
given just the system, were using it in completely dif-
ferent ways: one as a total homework substitute, one
as a homework add-on, and another as a independent
(i.e no teacher enforcement of usage) self-study tool for
annual AP exams. These results show that even a bare-
bones implementation of this framework, one driven by
open-source information sources and widely available
machine learning algorithms, can be easily molded to
varying use cases with no extra effort from educators.

In addition, discussions with the pilot program’s
teachers showed that the system’s class performance
statistics were overwhelmingly described as the most
important features. Class-level feedback allowed for
more focused discussions during classtime with stu-
dents. During the short pilot test, we were told that
teachers’ day-to-day schedules became more dynamic,
and time devoted to discussing each topic was driven by
the performance of the students, rather than just blindly
assigned from the teacher’s intuition.

4 Conclusion

We present a simple yet effective system that builds on
popular hypotheses in educational psychology, and re-
produce them in a scalable software framework. We
provide a flexible solution that can serve a wide vari-
ety of purposes in a classroom, while keeping educa-
tors in the loop every step of the way. We present em-
pirical evidence that cements our original hypothesis
about key factors for effective learning, and our work
shows that the right mix of machine learning mod-
els can provide students and teachers enormous impact
when turned towards an education setting.
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